论文标题

使用连续时间演变的量子计算

Quantum computing using continuous-time evolution

论文作者

Kendon, Viv

论文摘要

计算方法是我们除了探索复杂生物系统特性的科学实验外拥有的最有效工具。进度正在放缓,因为数字硅计算机在速度方面已经达到了极限。使用根本不同的架构(包括神经形态和量子)的其他类型的计算承诺在速度和效率方面取得突破。量子计算利用量子系统的相干性和叠加特性,以探索许多可能的计算路径并行。这为解决某些类型的计算问题提供了从根本上提供更有效的途径,包括与生物模拟相关的几种相关性。特别是,在许多生物学模型(包括蛋白质折叠和分子动力学)中,凸和非凸的优化问题都具有特征。早期量子计算机将很小,让人联想到数字硅计算的早期。了解如何利用第一代量子硬件对于在生物模拟和下一代量子计算机的发展中取得进展至关重要。这篇综述概述了量子计算的当前最新和未来前景,并提供了一些迹象,表明了如何和在何处将其应用于生物模拟中的瓶颈。

Computational methods are the most effective tools we have besides scientific experiments to explore the properties of complex biological systems. Progress is slowing because digital silicon computers have reached their limits in terms of speed. Other types of computation using radically different architectures, including neuromorphic and quantum, promise breakthroughs in both speed and efficiency. Quantum computing exploits the coherence and superposition properties of quantum systems to explore many possible computational paths in parallel. This provides a fundamentally more efficient route to solving some types of computational problems, including several of relevance to biological simulations. In particular, optimisation problems, both convex and non-convex, feature in many biological models, including protein folding and molecular dynamics. Early quantum computers will be small, reminiscent of the early days of digital silicon computing. Understanding how to exploit the first generation of quantum hardware is crucial for making progress in both biological simulation and the development of the next generations of quantum computers. This review outlines the current state-of-the-art and future prospects for quantum computing, and provides some indications of how and where to apply it to speed up bottlenecks in biological simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源