论文标题

在$ {\ bf l^1(μ)} $的riesz dual上

On the Riesz dual of ${\bf L^1(μ)}$

论文作者

van Rooij, Arnoud

论文摘要

在本文中,$(x,\,\ Mathcal {a},\,μ)$是量度的速度。一个经典的结果建立了$ l^1(μ)^{\ sim} $和$ l^{\ infty}(μ)$之间的riesz同构。通常,仍然有天然的riesz同构$φ:l^{\ infty}(μ)\至l^1(μ)^{\ sim},但可能不是注射式或过度的。我们证明,$φ$的范围始终是$ l^1(μ)^{\ sim} $的订单密集riesz子空间。如果$μ$是半金融的,则$ l^1(μ)^{\ sim} $是$ l^{\ infty}(μ)$的Dedekind完成。

In this article, $(X,\, \mathcal{A},\, μ)$ is a measure apace. A classical result establishes a Riesz isomorphism between $L^1(μ)^{\sim}$ and $L^{\infty}(μ)$ in case the measure $μ$ is $σ$-finite. In general, there still is a natural Riesz homomorphism $Φ: L^{\infty}(μ) \to L^1(μ)^{\sim},$ but it may not be injective or surjective. We prove that always the range of $Φ$ is an order dense Riesz subspace of $L^1(μ)^{\sim}$. If $μ$ is semi-finite, then $L^1(μ)^{\sim}$ is a Dedekind completion of $L^{\infty}(μ)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源