论文标题
在极端,未知的环境中学习和控制的自主机器人探索
Learned and Controlled Autonomous Robotic Exploration in an Extreme, Unknown Environment
论文作者
论文摘要
用地表机器人探索和穿越极端地形很困难,但对于许多应用,包括探索行星表面,搜索和救援等非常需要。对于这些应用,为了确保机器人可以可以预见的是机车,必须将地形与车辆之间的相互作用纳入机器人的机能模型中。在不知道先验地形的情况下,建模地形效应很困难,可能是不可能的。由于这些原因,希望在线学习Terramechanics模型,以提高机器人运动的可预测性。以前的学习算法实现的问题是,Terramechanics模型和相应的生成的控制策略不容易解释或扩展。如果模型是可解释的形式,则设计师可以使用学习的模型为车辆和/或控制设计更改提供信息,以完善用于未来应用的机器人体系结构。本文探讨了一种使用基于模型的遗传算法学习Terramogenics模型和控制策略的新方法。所提出的方法产生了可解释的模型,可以使用先前存在的分析方法对其进行分析。本文提供了显示实用应用的模拟结果,遗传算法的性能大致等于最先进的神经网络方法的性能,该方法无法提供易于解释的模型。
Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.