论文标题
SU(3)具有十种基本口味的梯度流量级尺度函数
Gradient flow step-scaling function for SU(3) with ten fundamental flavors
论文作者
论文摘要
我们计算带有十种基本口味的SU(3)仪表理论,计算重新归一化组$β$功能的晶格类似物。我们提出了详细的分析,包括研究使用Symanzik仪表作用的十种动态口味的广泛数据集的系统效应,以及三倍的粗壮的Möbius域壁壁费。我们最多使用$ 32^4 $卷,我们计算了不同梯度流方案的重新归一化耦合,并确定量表更改的步骤缩放$β$函数$ s = 2 $,最多五个不同的晶格量对。在随附的论文中,我们讨论了梯度流可以将晶格脱位促进插入式的物体,从而将非扰动晶格伪像引入步骤缩放函数。由威尔逊流充分抑制这些文物的观察,我们选择威尔逊流动的人,用Symanzik操作员作为我们的首选分析。我们通过基于替代流(Zeuthen或Symanzik),替代操作员(Wilson Plaquette,Clover)来计算阶梯尺度函数来研究系统效应,并探索扰动树水平改进的影响。此外,我们研究了$ L_S $的有限值引起的效果。
We calculate the step scaling function, the lattice analog of the renormalization group $β$-function, for an SU(3) gauge theory with ten fundamental flavors. We present a detailed analysis including the study of systematic effects of our extensive data set generated with ten dynamical flavors using the Symanzik gauge action and three times stout smeared Möbius domain wall fermions. Using up to $32^4$ volumes, we calculate renormalized couplings for different gradient flow schemes and determine the step-scaling $β$ function for a scale change $s=2$ on up to five different lattice volume pairs. In an accompanying paper we discuss that gradient flow can promote lattice dislocations to instanton-like objects, introducing nonperturbative lattice artifacts to the step scaling function. Motivated by the observation that Wilson flow sufficiently suppresses these artifacts, we choose Wilson flow with the Symanzik operator as our preferred analysis. We study systematic effects by calculating the step-scaling function based on alternative flows (Zeuthen or Symanzik), alternative operators (Wilson plaquette, clover), and also explore the effects of the perturbative tree-level improvement. Further we investigate the effects due to the finite value of $L_s$.