论文标题

5G网络中增量学习的成本效益和偏斜的数据调度

Cost-efficient and Skew-aware Data Scheduling for Incremental Learning in 5G Network

论文作者

Pu, Lingjun, Yuan, Xinjing, Xu, Xiaohang, Chen, Xu, Zhou, Pan, Xu, Jingdong

论文摘要

为了促进5G网络中的新兴应用程序,移动网络运营商将在控制和预测方面提供许多网络功能。最近,他们认识到机器学习的力量(ML),并开始探索其促进这些网络功能的潜力。然而,当前的网络功能ML模型通常以离线方式得出,这是由于向远程ML训练云传输大量数据集的开销效率低下,并且无法为连续模型更新提供增量学习能力。作为替代解决方案,我们提出了鸡尾酒,这是参考5G网络体系结构中的增量学习框架。为了提高成本效率,同时提高训练有素的模型准确性,有效的在线数据调度策略至关重要。为此,我们制定了一个在线数据调度问题,以优化框架成本,同时减轻培训工人从长期角度的能力异质性引起的数据偏斜问题。我们利用随机梯度下降来设计一种在线渐近最佳算法,包括基于新的图形结构的两种最佳策略,用于偏斜的数据收集和数据培训。小型测试床和大规模模拟验证了我们提出的框架的出色性能。

To facilitate the emerging applications in 5G networks, mobile network operators will provide many network functions in terms of control and prediction. Recently, they have recognized the power of machine learning (ML) and started to explore its potential to facilitate those network functions. Nevertheless, the current ML models for network functions are often derived in an offline manner, which is inefficient due to the excessive overhead for transmitting a huge volume of dataset to remote ML training clouds and failing to provide the incremental learning capability for the continuous model updating. As an alternative solution, we propose Cocktail, an incremental learning framework within a reference 5G network architecture. To achieve cost efficiency while increasing trained model accuracy, an efficient online data scheduling policy is essential. To this end, we formulate an online data scheduling problem to optimize the framework cost while alleviating the data skew issue caused by the capacity heterogeneity of training workers from the long-term perspective. We exploit the stochastic gradient descent to devise an online asymptotically optimal algorithm, including two optimal policies based on novel graph constructions for skew-aware data collection and data training. Small-scale testbed and large-scale simulations validate the superior performance of our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源