论文标题

Sonos中的设备感知推理操作非易失性存储器阵列

Device-aware inference operations in SONOS nonvolatile memory arrays

论文作者

Bennett, Christopher H., Xiao, T. Patrick, Dellana, Ryan, Agrawal, Vineet, Feinberg, Ben, Prabhakar, Venkatraman, Ramkumar, Krishnaswamy, Hinh, Long, Saha, Swatilekha, Raghavan, Vijay, Chettuvetty, Ramesh, Agarwal, Sapan, Marinella, Matthew J.

论文摘要

非挥发记忆阵列可以将预训练的神经网络模型用于边缘推理。但是,这些系统受设备级噪声和保留问题的影响。在这里,我们检查了由这些影响造成的损害,引入了缓解策略,并证明了其在制造的Sonos(硅氧化二氮 - 氧化物)设备中的用途。在MNIST,时尚摄影和CIFAR-10任务上,我们的方法增加了对突触噪声和漂移的弹性。我们还可以通过5-8位精度来实现强大的性能。

Non-volatile memory arrays can deploy pre-trained neural network models for edge inference. However, these systems are affected by device-level noise and retention issues. Here, we examine damage caused by these effects, introduce a mitigation strategy, and demonstrate its use in fabricated array of SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) devices. On MNIST, fashion-MNIST, and CIFAR-10 tasks, our approach increases resilience to synaptic noise and drift. We also show strong performance can be realized with ADCs of 5-8 bits precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源