论文标题
damour-solodukhin虫洞的偏转角度偏差的光子球的偏转角度的非质体差异,
Nonlogarithmic divergence of a deflection angle by a marginally unstable photon sphere of the Damour-Solodukhin wormhole in a strong deflection limit
论文作者
论文摘要
没有事件范围的静态,球形对称的黑洞和紧凑的物体具有不稳定的(稳定)圆形轨道,称为光子(antiphoton)球体。已建议使用damour-solodukhin虫洞作为简单的黑洞模仿,其公制张量与黑洞的差异通过无量纲参数$λ$描述。带有两个平坦区域的虫洞有两个光子球,一个$λ<\ sqrt {2}/2 $的抗thot子球和一个the thephoton球和一个光子球,以$λ\ geq \ geq \ sqrt {2}}/2 $。当参数$λ$为$ \ sqrt {2}/2 $时,由于光子球和抗thoton球的变性,光子球的差异是不稳定的。我们研究了蠕虫孔在弱和强力场中的重力镜头。我们发现,光线的偏转角反射为边缘不稳定的光子球体在$λ= \ sqrt {2}/2 $的强偏转极限上以较大的偏度极限差异,而光子球体反射的偏转角则是$λ\ neq \ neq \ neq \ s的偏度反射。我们扩展了针对非差异差异案例的强挠度极限分析。我们希望我们的方法可以通过各种紧凑型物体的略微不稳定的光子球来应用重力镜片。
Static, spherically symmetric black holes and compact objects without an event horizon have unstable (stable) circular orbits of a light called photon (antiphoton) sphere. A Damour-Solodukhin wormhole has been suggested as a simple black hole mimicker and the difference of its metric tensors from a black hole is described by a dimensionless parameter $λ$. The wormhole with two flat regions has two photon spheres and an antiphoton sphere for $λ<\sqrt{2}/2$ and a photon sphere for $λ\geq \sqrt{2}/2$. When the parameter $λ$ is $\sqrt{2}/2$, the photon sphere is marginally unstable because of degeneration of the photon spheres and antiphoton sphere. We investigate gravitational lensing by the wormhole in weak and strong gravitational fields. We find that the deflection angle of a light ray reflected by the marginally unstable photon sphere diverges nonlogarithmically in a strong deflection limit for $λ=\sqrt{2}/2$, while the deflection angle reflected by the photon sphere diverges logarithmically for $λ\neq \sqrt{2}/2$. We extend a strong deflection limit analysis for the nonlogarithmic divergence case. We expect that our method can be applied for gravitational lenses by marginally unstable photon spheres of various compact objects.