论文标题

在有限的知识下有效的网络免疫

Efficient network immunization under limited knowledge

论文作者

Liu, Yangyang, Sanhedrai, Hillel, Dong, GaoGao, Shekhtman, Louis M., Wang, Fan, Buldyrev, Sergey V., Havlin, Shlomo

论文摘要

大型网络的有针对性免疫或攻击引起了科学界的极大关注。但是,在实际情况下,网络的知识和观察结果可能受到限制,从而排除对最佳节点进行免疫(或删除)的全面评估,以避免流行病扩散,例如当前的COVID-19S流行病。在这里,我们研究了一种新颖的免疫策略,一次只观察到$ n $节点,并且这些$ n $节点之间的最中心是免疫(或攻击)。该过程重复继续,直到$ 1-p $ $的节点分数被免疫(或攻击)。我们为这种方法开发了一个分析框架,并确定关键的渗透阈值$ p_c $和巨型组件$ p _ {\ infty} $的大小,用于具有任意度分布的网络$ p(k)$。在$ n \ to \ infty $的限制中,我们在目标攻击方面恢复了先前的工作,而对于$ n = 1 $,我们恢复已知的随机失败情况。在这两个极端之间,我们观察到,随着$ n $的增加,$ p_c $通过完整的信息在目标免疫(攻击)下迅速增加了其最佳价值。特别是,我们发现$ | p_c(\ infty)-p_c(n)| $和$ n $ AS $ | p_c(\ infty)-p_c(n)| \ sim n^{ - 1} \ exp(-αN)$之间的新扩展关系。对于无标度(SF)网络,其中$ p(k)\ sim k^{ - γ},2 <γ<3 $,当$ p_c $从零n $从$ n = 1 $增加到$ \ log n $($ \ n $($ n $)的订单时,$ n $的过渡到$ n $是网络的尺寸)。因此,对于SF网络,$ \ log n $节点的顺序知识并免疫它们可以大大减少流行病。

Targeted immunization or attacks of large-scale networks has attracted significant attention by the scientific community. However, in real-world scenarios, knowledge and observations of the network may be limited thereby precluding a full assessment of the optimal nodes to immunize (or remove) in order to avoid epidemic spreading such as that of current COVID-19 epidemic. Here, we study a novel immunization strategy where only $n$ nodes are observed at a time and the most central between these $n$ nodes is immunized (or attacked). This process is continued repeatedly until $1-p$ fraction of nodes are immunized (or attacked). We develop an analytical framework for this approach and determine the critical percolation threshold $p_c$ and the size of the giant component $P_{\infty}$ for networks with arbitrary degree distributions $P(k)$. In the limit of $n\to\infty$ we recover prior work on targeted attack, whereas for $n=1$ we recover the known case of random failure. Between these two extremes, we observe that as $n$ increases, $p_c$ increases quickly towards its optimal value under targeted immunization (attack) with complete information. In particular, we find a new scaling relationship between $|p_c(\infty)-p_c(n)|$ and $n$ as $|p_c(\infty)-p_c(n)|\sim n^{-1}\exp(-αn)$. For Scale-free (SF) networks, where $P(k)\sim k^{-γ}, 2<γ<3$, we find that $p_c$ has a transition from zero to non-zero when $n$ increases from $n=1$ to order of $\log N$ ($N$ is the size of network). Thus, for SF networks, knowledge of order of $\log N$ nodes and immunizing them can reduce dramatically an epidemics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源