论文标题

对抗性强化学习基于学习的强大访问点协调不协调的干扰

Adversarial Reinforcement Learning-based Robust Access Point Coordination Against Uncoordinated Interference

论文作者

Kihira, Yuto, Koda, Yusuke, Yamamoto, Koji, Nishio, Takayuki, Morikura, Masahiro

论文摘要

本文提出了一种强大的对抗强化学习(RARL)基于多访问点(AP)协调方法,该方法即使对未协调的AP的意外分散操作也是可靠的。多AP协调是对IEEE 802.11BE的一种有希望的技术,并且有一些研究将RL用于多AP协调。实际上,一种简单的基于RL的多AP协调方法降低了AP之间的碰撞概率。因此,该方法是提高时间资源效率的一种有前途的方法。但是,此方法容易受到不太了解其他协调AP的帧传输的不协调AP的传输。为了帮助中央代理体验到这种意外的框架变速器,除了中央代理外,该建议的方法还竞争性地训练了对抗性AP,该AP通过强烈的造成框架碰撞而扰乱了APS。此外,我们建议利用协调AP的框架损失史,以促进中央代理与对抗性AP之间的合理竞争。仿真结果表明,与不考虑未考虑不协调的AP相比,所提出的方法可以避免不协调的干扰,从而改善系统中吞吐量的最小总和。

This paper proposes a robust adversarial reinforcement learning (RARL)-based multi-access point (AP) coordination method that is robust even against unexpected decentralized operations of uncoordinated APs. Multi-AP coordination is a promising technique towards IEEE 802.11be, and there are studies that use RL for multi-AP coordination. Indeed, a simple RL-based multi-AP coordination method diminishes the collision probability among the APs; therefore, the method is a promising approach to improve time-resource efficiency. However, this method is vulnerable to frame transmissions of uncoordinated APs that are less aware of frame transmissions of other coordinated APs. To help the central agent experience even such unexpected frame transmissions, in addition to the central agent, the proposed method also competitively trains an adversarial AP that disturbs coordinated APs by causing frame collisions intensively. Besides, we propose to exploit a history of frame losses of a coordinated AP to promote reasonable competition between the central agent and adversarial AP. The simulation results indicate that the proposed method can avoid uncoordinated interference and thereby improve the minimum sum of the throughputs in the system compared to not considering the uncoordinated AP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源