论文标题
最佳和贪婪:无人机互联网的无人机协会和定位方案
The Optimal and the Greedy: Drone Association and Positioning Schemes for Internet of UAVs
论文作者
论文摘要
这项工作认为在预定义的区域内部署无人机(UAV),以服务于许多地面用户。由于网络的异质性质,无人机可能会严重干扰彼此的传播。因此,需要对用户-UAV关联和无人机位置的明智设计。在玩家是无人机的地方,定义了潜在的游戏。潜在功能是用户的总和结果。潜在游戏中的代理商实用程序是他们对全球福利或所谓的奇妙生活实用程序的边际贡献。然后将游戏理论学习算法,二进制对数线性学习(BLLL)应用于问题。鉴于潜在的游戏结构,我们的实用程序设计的结果,保证使用BLLL的随机稳定状态可以成为潜在的最大化器。因此,我们最佳地解决了用户-UAV关联和3D位置问题。接下来,我们利用无人机的给定配置来利用总和速率函数的亚模块特征来设计有效的贪婪算法。尽管贪婪算法简单,但它的最佳解决方案的保证性能保证了$ 1-1/e $。为了进一步减少迭代次数,我们提出了另一种启发式贪婪算法,可提供非常好的效果。我们的模拟表明,在实践中,提出的贪婪方法在一些迭代中实现了显着的性能。
This work considers the deployment of unmanned aerial vehicles (UAVs) over a predefined area to serve a number of ground users. Due to the heterogeneous nature of the network,the UAVs may cause severe interference to the transmissions of each other. Hence, a judicious design of the user-UAV association and UAV locations is desired. A potential game is defined where the players are the UAVs. The potential function is the total sum-rate of the users. The agents utility in the potential games is their marginal contribution to the global welfare or their so-called wonderful life utility. A game-theoretic learning algorithm, binary log-linear learning (BLLL), is then applied to the problem. Given the potential game structure, a consequence of our utility design, the stochastically stable states using BLLL are guaranteed to be the potential maximizers. Hence, we optimally solve the user-UAV association and 3D-location problem. Next, we exploit the sub-modular features of the sum rate function for a given configuration of UAVs to design an efficient greedy algorithm. Despite the simplicity of the greedy algorithm, it comes with a guaranteed performance of $1-1/e$ of the optimal solution. To further reduce the number of iterations, we propose another heuristic greedy algorithm that provides very good results. Our simulations show that, in practice, the proposed greedy approaches achieve significant performance in a few number of iterations.