论文标题

通过CNN和TV-TV最小化,可靠的单片图像超分辨率

Robust Single-Image Super-Resolution via CNNs and TV-TV Minimization

论文作者

Vella, Marija, Mota, João F. C.

论文摘要

单片图像超分辨率是增加图像分辨率的过程,从低分辨率(LR)一个获得高分辨率(HR)图像。通过利用大型培训数据集,卷积神经网络(CNN)目前在此任务中实现最先进的性能。但是,在测试/部署期间,它们无法在HR和LR图像之间执行一致性:如果我们将输出hr图像下样本,则它永远不会匹配其LR输入。基于此观察结果,我们建议使用一个优化问题进行后处理CNN输出,我们称之为TV-TV最小化,从而实现一致性。正如我们的广泛实验所表明的那样,这种后处理不仅可以根据PSNR和SSIM来提高图像的质量,而且还使超级分辨率的任务与操作员不匹配的稳健任务(即,当真实的下采样操作员都不同于用于创建训练数据集的一种。

Single-image super-resolution is the process of increasing the resolution of an image, obtaining a high-resolution (HR) image from a low-resolution (LR) one. By leveraging large training datasets, convolutional neural networks (CNNs) currently achieve the state-of-the-art performance in this task. Yet, during testing/deployment, they fail to enforce consistency between the HR and LR images: if we downsample the output HR image, it never matches its LR input. Based on this observation, we propose to post-process the CNN outputs with an optimization problem that we call TV-TV minimization, which enforces consistency. As our extensive experiments show, such post-processing not only improves the quality of the images, in terms of PSNR and SSIM, but also makes the super-resolution task robust to operator mismatch, i.e., when the true downsampling operator is different from the one used to create the training dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源