论文标题
具有自适应正常约束的闭塞感知深度估计
Occlusion-Aware Depth Estimation with Adaptive Normal Constraints
论文作者
论文摘要
我们提出了一种基于学习的新方法,用于从颜色视频中进行多帧深度估算,这是场景理解,机器人导航或手持3D重建的基本问题。尽管最近基于学习的方法估计了高精度的深度,但从其深度地图中导出的3D点云通常无法保留人造场景的重要几何特征(例如角落,边缘,边缘,平面)。广泛使用的像素深度错误并不能特别惩罚这些功能的不一致。当累积后续深度重建以试图用具有这种特征的人造物体扫描完整的环境时,这些不准确的情况尤其严重。因此,我们的深度估计算法引入了一个组合的正常地图(CNM)约束,该约束旨在更好地保留高侵蚀特征和全球平面区域。为了进一步提高深度估计的精度,我们引入了一种新的闭塞感知策略,该策略将来自多个相邻视图的初始深度预测汇总到一个最终深度图中,并为当前参考视图提供一个闭塞概率图。我们的方法在深度估计准确性方面优于最新方法,并且保留人造室内场景的基本几何特征要比其他算法要好得多。
We present a new learning-based method for multi-frame depth estimation from a color video, which is a fundamental problem in scene understanding, robot navigation or handheld 3D reconstruction. While recent learning-based methods estimate depth at high accuracy, 3D point clouds exported from their depth maps often fail to preserve important geometric feature (e.g., corners, edges, planes) of man-made scenes. Widely-used pixel-wise depth errors do not specifically penalize inconsistency on these features. These inaccuracies are particularly severe when subsequent depth reconstructions are accumulated in an attempt to scan a full environment with man-made objects with this kind of features. Our depth estimation algorithm therefore introduces a Combined Normal Map (CNM) constraint, which is designed to better preserve high-curvature features and global planar regions. In order to further improve the depth estimation accuracy, we introduce a new occlusion-aware strategy that aggregates initial depth predictions from multiple adjacent views into one final depth map and one occlusion probability map for the current reference view. Our method outperforms the state-of-the-art in terms of depth estimation accuracy, and preserves essential geometric features of man-made indoor scenes much better than other algorithms.