论文标题
构建五重式非线性Schrodinger方程的多个孤子溶液
Construction of multiple soliton solutions of the quintic nonlinear Schrodinger equation
论文作者
论文摘要
在本文中,在Infinity的零边界条件下研究了具有高阶的扩展非线性Schrodinger方程,其中包括具有匹配高阶非线性项的五阶分散体。进行光谱分析,在真实轴上提出了一种基质riemann-hilbert问题。然后,根据不反射限制的结果矩阵riemann-hilbert问题,明确生成了扩展非线性schrodinger方程的多个孤子溶液。
In this paper, an extended nonlinear Schrodinger equation with higher-order that includes fifth-order dispersion with matching higher-order nonlinear terms is investigated under zero boundary condition at infinity. Carrying out the spectral analysis, a kind of matrix Riemann-Hilbert problem is formulated on the real axis. Then on basis of the resulting matrix Riemann-Hilbert problem under restriction of no reflection, multiple soliton solutions of the extended nonlinear Schrodinger equation are generated explicitly.