论文标题
训练DNN中可控的正交化
Controllable Orthogonalization in Training DNNs
论文作者
论文摘要
正交性广泛用于训练深神网络(DNN),因为它能够维持雅各布式的所有奇异值接近1的值并减少表示的冗余。本文提出了一种使用牛顿迭代(ONI)的计算高效且数值稳定的正交方法,以学习DNNS中的层正交重量矩阵。 ONI通过迭代将重量矩阵的奇异值伸向1。此属性使其能够通过其迭代次数来控制权重矩阵的正交性。我们表明,我们的方法通过有效控制正交性来提高图像分类网络的性能,从而在优化收益和降低代表性能力之间提供最佳的权衡。我们还表明,ONI通过保持网络的Lipschitz连续性(类似于频谱归一化(SN)(SN)的Lipschitz连续性,可以稳定生成对抗网络(GAN)的训练,并通过提供可控制的正交性来超过SN。
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1 and reduce redundancy in representation. This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI), to learn a layer-wise orthogonal weight matrix in DNNs. ONI works by iteratively stretching the singular values of a weight matrix towards 1. This property enables it to control the orthogonality of a weight matrix by its number of iterations. We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction. We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (SN), and further outperforms SN by providing controllable orthogonality.