论文标题
复杂和热带计数通过积极特征
Complex and tropical counts via positive characteristic
论文作者
论文摘要
我们调和一些列举问题的复杂和热带计数之间的差异,这些问题降低到积极的特征。我们考虑的每个问题都表明具有特殊行为的质量。 Modulo这个素数,解决方案均匀簇结合:在这个特殊的素数下,几何和热带行为匹配。作为示例,我们集中于平面曲线的拐点和规范曲线的theta-hyperplanes。
We reconcile the discrepancy between the complex and tropical counts of some enumerative problems reducing to positive characteristic. Each problem that we consider suggests a prime with special behaviour. Modulo this prime, the solutions coalesce in uniform clusters: at this special prime, the geometric and the tropical behaviours match. As examples, we concentrate on inflection points of plane curves and theta-hyperplanes of canonical curves.