论文标题
一种用于建模替代二元晶体材料的启发式量子古典算法
A Heuristic Quantum-Classical Algorithm for Modeling Substitutionally Disordered Binary Crystalline Materials
论文作者
论文摘要
提高能源计算的效率和准确性一直对材料信息学领域具有重要意义,并继续感兴趣,该领域将机器学习技术应用于计算材料数据。在这里,我们提出了一种启发式量子古典算法,以有效地建模并预测替代无序的二元晶体材料的能量。具体而言,设计和训练的量子电路在晶格位点的数量中进行线性缩放,以预测指数缩放的特征空间中量子化学模拟的能量。该电路是通过经典的量子化学模拟获得的数据通过经典监督学习训练的。作为培训过程的一部分,我们介绍了一个能够在输入数据中检测和纠正异常的子例程。该算法在Li-Cobaltate系统的复杂层结构上是一种广泛使用的锂离子电池阴极材料组件。我们的结果表明,提出的量子电路模型为对从这种量子机械系统获得的能量进行建模提供了合适的选择。此外,对异常数据的分析提供了对所研究系统热力学特性的重要见解。
Improving the efficiency and accuracy of energy calculations has been of significant and continued interest in the area of materials informatics, a field that applies machine learning techniques to computational materials data. Here, we present a heuristic quantum-classical algorithm to efficiently model and predict the energies of substitutionally disordered binary crystalline materials. Specifically, a quantum circuit that scales linearly in the number of lattice sites is designed and trained to predict the energies of quantum chemical simulations in an exponentially-scaling feature space. This circuit is trained by classical supervised-learning using data obtained from classically-computed quantum chemical simulations. As a part of the training process, we introduce a sub-routine that is able to detect and rectify anomalies in the input data. The algorithm is demonstrated on the complex layer-structured of Li-cobaltate system, a widely-used Li-ion battery cathode material component. Our results shows that the proposed quantum circuit model presents a suitable choice for modelling the energies obtained from such quantum mechanical systems. Furthermore, analysis of the anomalous data provides important insights into the thermodynamic properties of the systems studied.