论文标题
在与四分之一飞机上的步行相关的内核曲线上
On the Kernel curves associated with walks in the quarter plane
论文作者
论文摘要
内核方法是研究四分之一平面中生成一系列步行的重要工具。该方法涉及等于某个多项式(内核多项式)的零,并且使用曲线的属性,内核曲线。在本文中,我们研究了内核曲线的基本特性(不可约性,奇异性,属,均匀化等)。
The kernel method is an essential tool for the study of generating series of walks in the quarter plane. This method involves equating to zero a certain polynomial, the kernel polynomial, and using properties of the curve, the kernel curve, this defines. In the present paper, we investigate the basic properties of the kernel curve (irreducibility, singularities, genus, uniformization, etc).