论文标题

深度学习合并质量从重力波信号中估计频域中

Deep learning merger masses estimation from gravitational waves signals in the frequency domain

论文作者

Marulanda, Juan Pablo, Santa, Camilo, Romano, Antonio Enea

论文摘要

从紧凑的二元合并中检测引力波(GW)为多通信的天体物理学提供了新的窗口。确定合并参数的标准技术是匹配的过滤,包括将信号与模板库进行比较。由于需要分析的大量实验数据,这种方法可能会耗时且计算昂贵。 为了找到更有效的数据分析方法,我们开发了一个新的频域卷积神经网络(FCNN),以预测检测器信号频谱图的合并质量,并将其与时域神经网络(TCNN)进行比较。由于使用频谱图对FCNN进行了训练,因此与TCNN相比,输入的尺寸降低了,这意味着模型参数的数量大大降低,因此过度拟合较少。计算频谱图所需的额外时间大约由FCNN的较低执行时间弥补,这是由于参数数较低。在我们的分析中,FCNN在验证数据上的性能稍好,并且由于参数的数量较低而预期的是,越来越低的效果,这为GW检测器数据的分析提供了一种新的有希望的方法,通过使用更有效,更快的频谱计算来进一步改善,这可以进一步改善。

Detection of gravitational waves (GW) from compact binary mergers provide a new window into multi-messenger astrophysics. The standard technique to determine the merger parameters is matched filtering, consisting in comparing the signal to a template bank. This approach can be time consuming and computationally expensive due to the large amount of experimental data which needs to be analyzed. In the attempt to find more efficient data analysis methods we develop a new frequency domain convolutional neural network (FCNN) to predict the merger masses from the spectrogram of the detector signal, and compare it to time domain neural networks (TCNN). Since FCNNs are trained using spectrograms, the dimension of the input is reduced as compared to TCNNs, implying a substantially lower number of model parameters, and consequently less over-fitting. The additional time required to compute the spectrogram is approximately compensated by the lower execution time of the FCNNs, due to the lower number of parameters. In our analysis FCNNs show a slightly better performance on validation data and a substantially lower over-fit, as expected due to the lower number of parameters, providing a new promising approach to the analysis of GW detectors data, which could be further improved in the future by using more efficient and faster computations of the spectrogram.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源