论文标题
$ 4D $ EINSTEIN-GAUSS- BONNET重力
Nonsingular Black Holes in $4D$ Einstein--Gauss--Bonnet Gravity
论文作者
论文摘要
最近,已经提出了几种方法,以使爱因斯坦 - 加斯 - 邦纳特(EGB)的$ d \至4 $限制正规,从而导致非平凡的引力动力为$ 4D $。我们在$ 4D $ EGB的重力中提出了一个精确的非源黑洞溶液,该溶液耦合到非线性电动力学,并分析其热力学特性,以计算黑洞质量,温度和熵的精确表达式。由于具有磁性电荷,因此可以校正热力学数量,并且在较大的临界半径$ r = r = r _ {+}^{c} $的情况下,与$ 5D $相比,在温度最大的情况下,鹰 - 页相变的热量可以实现。因此,我们有一个黑洞,上面有凯奇(Cauchy)和事件范围,其蒸发导致热力学稳定的极端黑洞残留物,其温度消失了,其尺寸大于$ 5D $的对应物。熵不满足通常的确切范围bekenstein-与对数区域校正项的一般相对论的陷入困境。
Recently, several methods have been proposed to regularize a $D \to 4$ limit of Einstein-Gauss-Bonnet (EGB), leading to nontrivial gravitational dynamics in $4D$. We present an exact nonsingular black hole solution in the $4D$ EGB gravity coupled to non-linear electrodynamics and analyze their thermodynamic properties to calculate precise expressions for the black hole mass, temperature, and entropy. Because of the magnetic charge, the thermodynamic quantities are corrected, and the Hawking--Page phase transition is achievable with diverges of the heat capacity at a larger critical radius $r=r_{+}^{C}$ in comparison to the $5D$ counterpart where the temperature is maximum. Thus, we have a black hole with Cauchy and event horizons, and its evaporation leads to a thermodynamically stable extremal black hole remnant with vanishing temperature, and its size is larger than the $5D$ counterpart. The entropy does not satisfy the usual exact horizon Bekenstein--Hawking area law of general relativity with a logarithmic area correction term.