论文标题

单位图HDR重建通过学习逆转摄像机管道

Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

论文作者

Liu, Yu-Lun, Lai, Wei-Sheng, Chen, Yu-Sheng, Kao, Yi-Lung, Yang, Ming-Hsuan, Chuang, Yung-Yu, Huang, Jia-Bin

论文摘要

从单个低动态范围(LDR)输入图像中恢复高动态范围(HDR)图像,这是有挑战性的,这是由于量化和摄像机传感器的量化不足/过度暴露区域中缺少细节。与现有基于学习的方法相反,我们的核心思想是将LDR图像形成管道的域知识纳入我们的模型。我们将HDRTO-LDR图像形成管道建模为(1)动态范围剪辑,(2)来自相机响应函数的非线性映射,以及(3)量化。然后,我们建议学习三个专门的CNN来扭转这些步骤。通过将问题分解为特定的子任务,我们实施了有效的物理限制,以促进对单个子网络的培训。最后,我们共同微调整个模型的端到端,以减少误差积累。通过对不同图像数据集进行广泛的定量和定性实验,我们证明了所提出的方法对最先进的单像HDR重建算法的表现有利。

Recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to existing learning-based methods, our core idea is to incorporate the domain knowledge of the LDR image formation pipeline into our model. We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization. We then propose to learn three specialized CNNs to reverse these steps. By decomposing the problem into specific sub-tasks, we impose effective physical constraints to facilitate the training of individual sub-networks. Finally, we jointly fine-tune the entire model end-to-end to reduce error accumulation. With extensive quantitative and qualitative experiments on diverse image datasets, we demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源