论文标题
神经建筑发生器优化
Neural Architecture Generator Optimization
论文作者
论文摘要
首次提出了神经建筑搜索(NAS),以通过发现新的建筑模式而没有人类干预,以实现最先进的表现。然而,对搜索空间设计的专家知识的过度依赖依靠,导致表现不断提高(本地最佳),而没有重大的建筑突破,从而阻止了真正的新颖解决方案。在这项工作中,我们1)第一个研究铸造NAS作为找到最佳网络生成器的问题,2)我们提出了一个新的,层次和图形的搜索空间,能够代表多种多样的网络类型,但只需要很少连续的超参数。这大大降低了问题的维度,从而有效利用贝叶斯优化作为搜索策略。同时,我们扩大了有效体系结构的范围,激发了多目标学习方法。我们在六个基准数据集上证明了该策略的有效性,并表明我们的搜索空间产生了极其轻巧但竞争激烈的模型。
Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.