论文标题

用于晶体结构预测的生成对抗网络

Generative Adversarial Networks for Crystal Structure Prediction

论文作者

Kim, Sungwon, Noh, Juhwan, Gu, Geun Ho, Aspuru-Guzik, Alán, Jung, Yousung

论文摘要

对新功能材料的持续需求要求采取有效的策略来加速材料设计和发现。在应对这一挑战时,机器学习生成模型可以提供有希望的机会,因为它们允许通过低维的潜在空间连续导航化学空间。在这项工作中,我们采用了一种基于单位细胞信息和分数原子坐标的较低内存需求的晶体表示,并建立用于晶体结构的生成对抗网络(GAN)。然后将所提出的模型应用于MG-MN-O三元无机材料系统,以生成具有潜在水分光阳极的应用的新结构,并与对高通量虚拟筛选(HTVS)的光阳极性能的评估相结合。我们构建的生成HTVS系统可预测23种具有合理预测稳定性和带隙的新晶体结构。这些发现表明,所提出的生成模型可以是探索化学空间隐藏部分的有效方法,该区域通常是在采用常规替代发现时无法达到的。

The constant demand for new functional materials calls for efficient strategies to accelerate the materials design and discovery. In addressing this challenge, machine learning generative models can offer promising opportunities since they allow for the continuous navigation of chemical space via low dimensional latent spaces. In this work, we employ a crystal representation that is inversion-free with a low memory requirement based on unit cell information and fractional atomic coordinates, and build the generative adversarial network (GAN) for crystal structures. The proposed model is then applied to the Mg-Mn-O ternary inorganic materials system to generate novel structures with application as potential water-splitting photoanodes, and combined with the evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The generative-HTVS system that we built predicts 23 new crystal structures with a reasonable predicted stability and bandgap. These findings suggest that the proposed generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源