论文标题
适用于所有马赫数的可压缩欧拉方程的熵稳定数值通量
Entropy Stable Numerical Fluxes for Compressible Euler Equations which are Suitable for All Mach Numbers
论文作者
论文摘要
我们为可压缩的Euler方程提出了两个新型的两态近似riemann求解器,这些求和词是熵耗散的,适合模拟低马赫数。新事物是,我们另外的两种方法之一是动能稳定的。两种方法均基于Chandrashekar的熵满足和动能一致的方法(2013)。通过在Li&Gu(2008)的《 Spirit》的扩散矩阵中重新缩放一定的声音术语,可以实现低马赫数的合规性。在数值测试中,我们证明了较低的马赫数依从性和所提出的通量的熵稳定性。
We propose two novel two-state approximate Riemann solvers for the compressible Euler equations which are provably entropy dissipative and suitable for the simulation of low Mach numbers. What is new, is that one of our two methods in addition is provably kinetic energy stable. Both methods are based on the entropy satisfying and kinetic energy consistent methods of Chandrashekar (2013). The low Mach number compliance is achieved by rescaling some speed of sound terms in the diffusion matrix in the spirit of Li & Gu (2008). In numerical tests we demonstrate the low Mach number compliance and the entropy stability of the proposed fluxes.