论文标题
分析用于MRI重建的深层复合物值卷积神经网络
Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
论文作者
论文摘要
许多真实的信号源具有复杂的值,具有真实和虚构的组件。但是,绝大多数现有的深度学习平台和网络体系结构不支持复杂值数据的使用。 MRI数据本质上是复杂值,因此现有方法丢弃了复杂数据的富代数结构。在这项工作中,我们研究了端到端复杂值卷积神经网络 - 特别是用于图像重建,代替两通道实现的网络。我们将其应用于磁共振成像重建,以加速扫描时间并确定各种有希望的复合物值激活函数的性能。我们发现,与具有相同数量的可训练参数相比,在各种网络体系结构和数据集中,具有复杂值的复杂值为复杂的CNN提供了出色的重建。
Many real-world signal sources are complex-valued, having real and imaginary components. However, the vast majority of existing deep learning platforms and network architectures do not support the use of complex-valued data. MRI data is inherently complex-valued, so existing approaches discard the richer algebraic structure of the complex data. In this work, we investigate end-to-end complex-valued convolutional neural networks - specifically, for image reconstruction in lieu of two-channel real-valued networks. We apply this to magnetic resonance imaging reconstruction for the purpose of accelerating scan times and determine the performance of various promising complex-valued activation functions. We find that complex-valued CNNs with complex-valued convolutions provide superior reconstructions compared to real-valued convolutions with the same number of trainable parameters, over a variety of network architectures and datasets.