论文标题

超级2边彩色图

Supereulerian 2-edge-coloured graphs

论文作者

Bang-Jensen, Jørgen, Bellitto, Thomas, Yeo, Anders

论文摘要

如果$ g $包含一个跨越的封闭步道,则2章彩色的图形$ g $是{\ bf supereulerian},边缘在颜色上交替。一个2边彩的图的{\ bf eulerian因子}是顶点脱节引起的子图的集合,涵盖了$ g $的所有顶点,因此这些子图中的每一个都是supereulerian。我们给出一种多项式算法来测试2边彩的图是否具有欧拉因子并在存在时产生一个因子。如果它包含一对交替的$(u,v)$ - 路径($(u,v)$ - trails),则2边彩色的图是{\ bf(trail-)颜色连接},其工会是每对不同的不同的Vertices $ u,v $的交替封闭步行。如果$ xz $是$ g $的边缘,则每当$ g $的边缘与$ x $ u $连接到$ x $和$ z $,如果$ g $的边缘是$ g $的,则为2边彩色的图。 \ cite {balbuenadmtcs21}中引入的M封闭式2边彩色图,形成了对2边彩色完整图的丰富概括。我们表明,如果$ g $是M封闭式2边彩色完整图的延伸,那么$ G $是supereulerian的,并且仅当$ g $是与Trail-colour连接的,并且具有Eulerian因素。我们还表明,对于一般的2边色图,决定该图是否为supereulerian是NP的。最后,我们提出了许多开放问题。

A 2-edge-coloured graph $G$ is {\bf supereulerian} if $G$ contains a spanning closed trail in which the edges alternate in colours. An {\bf eulerian factor} of a 2-edge-coloured graph is a collection of vertex disjoint induced subgraphs which cover all the vertices of $G$ such that each of these subgraphs is supereulerian. We give a polynomial algorithm to test if a 2-edge-coloured graph has an eulerian factor and to produce one when it exists. A 2-edge-coloured graph is {\bf (trail-)colour-connected} if it contains a pair of alternating $(u,v)$-paths ($(u,v)$-trails) whose union is an alternating closed walk for every pair of distinct vertices $u,v$. A 2-edge-coloured graph is {\bf M-closed} if $xz$ is an edge of $G$ whenever some vertex $u$ is joined to both $x$ and $z$ by edges of the same colour. M-closed 2-edge-coloured graphs, introduced in \cite{balbuenaDMTCS21}, form a rich generalization of 2-edge-coloured complete graphs. We show that if $G$ is an extension of an M-closed 2-edge-coloured complete graph, then $G$ is supereulerian if and only if $G$ is trail-colour-connected and has an eulerian factor. We also show that for general 2-edge-coloured graphs it is NP-complete to decide whether the graph is supereulerian. Finally we pose a number of open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源