论文标题
RYS F模型的古典拓扑顺序及其在逼真的旋转冰中的故障:Faraday Loops的拓扑领域
Classical topological order of the Rys F-model and its breakdown in realistic spin ice: Topological sectors of Faraday loops
论文作者
论文摘要
RYS F模型和抗铁磁平方冰都具有相同的有序的抗铁磁基态,但订购过渡在后者中是二阶,而在前者中是无限顺序。为了将这种差异与拓扑特性及其故障联系起来,我们引入了一个法拉第线路表示,其中循环带有系统的能量和磁化。由于F模型中没有单孔,因此其环具有不同的拓扑特性,在方冰中没有,并且可以将其相空间自然分配到拓扑扇区中。然后,néel温度对应于从微不足道到非平凡拓扑部门的过渡。此外,其在临界场下方的零敏感性通过其磁化强度的同质不变性来解释。相反,在自旋冰中,单孔破坏了磁化的同质不变性,从而消除了这种丰富的拓扑结构。因此,即使是微不足道的回路也可以被磁化,它们的敏感性永远不会为零。
Both the Rys F-model and antiferromagnetic square ice posses the same ordered, antiferromagnetic ground state, but the ordering transition is of second order in the latter, and of infinite order in the former. To tie this difference to topological properties and their breakdown, we introduce a Faraday line representation where loops carry the energy and magnetization of the system. Because of the absence of monopoles in the F-model, its loops have distinct topological properties, absent in square ice, and which allow for a natural partition of its phase space into topological sectors. Then the Néel temperature corresponds to a transition from trivial to non-trivial topological sectors. Moreover, its zero susceptibility below a critical field is explained by the homotopy invariance of its magnetization. In spin ices, instead, monopoles destroy the homotopy invariance of the magnetization, and thus erase this rich topological structure. Consequently, even trivial loops can be magnetized, and their susceptibility is never zero.