论文标题
巨人:可扩展的网络规模的创建
GIANT: Scalable Creation of a Web-scale Ontology
论文作者
论文摘要
了解在线用户可能会注意的是内容建议和搜索服务的关键。这些服务将受益于实体,概念,事件,主题和类别的高度结构化和网络规模的本体。尽管现有的知识库和分类法体现了大量实体和类别,但我们认为他们无法以在线人群的语言风格中发现正确的杂物概念,事件和主题。在这些概念中,逻辑结构化的本体也不是。在本文中,我们提出了一种巨人,这是一种构建以用户为中心的,网络尺度的结构化本体的机制,其中包含大量自然语言短语,这些短语符合各种粒度,并根据大量的网络文档和搜索点击图表进行了开采。还构建了各种类型的边缘,以维持本体论中的层次结构。我们介绍了用于巨型的基于图形的基于图形网络的技术,并评估了与各种基准相比所提出的方法。 Giant产生了注意力本体,该本体已在涉及数十亿用户的各种腾讯应用程序中部署。在Tencent QQ浏览器上进行的在线A/B测试表明,注意力本体论可以显着提高新闻建议的点击率。
Understanding what online users may pay attention to is key to content recommendation and search services. These services will benefit from a highly structured and web-scale ontology of entities, concepts, events, topics and categories. While existing knowledge bases and taxonomies embody a large volume of entities and categories, we argue that they fail to discover properly grained concepts, events and topics in the language style of online population. Neither is a logically structured ontology maintained among these notions. In this paper, we present GIANT, a mechanism to construct a user-centered, web-scale, structured ontology, containing a large number of natural language phrases conforming to user attentions at various granularities, mined from a vast volume of web documents and search click graphs. Various types of edges are also constructed to maintain a hierarchy in the ontology. We present our graph-neural-network-based techniques used in GIANT, and evaluate the proposed methods as compared to a variety of baselines. GIANT has produced the Attention Ontology, which has been deployed in various Tencent applications involving over a billion users. Online A/B testing performed on Tencent QQ Browser shows that Attention Ontology can significantly improve click-through rates in news recommendation.