论文标题
$ 2 $ - 块,其缺陷组是同叶型,其惯性商包含歌手周期II
$2$-Blocks whose defect group is homocyclic and whose inertial quotient contains a Singer cycle II
论文作者
论文摘要
我们考虑$ 2 $ - 块有缺陷组$ d = q \ times r $和惯性商$ \ mathbb {e} $,其中$ q \ cong(c_ {2^m})^n $,$ r \ cong c_ c_ c_ c_ {2^r} $ and $ \ \ \ \ \ \ \ m { (订单$ 2^n-1 $的元素)。当$ \ mathbb {e} $是循环或$ r = 1 $时,我们将此类块分类为Morita等价。当$ r> 1 $和$ e $是非环保的时候,我们会实现部分分类。
We consider $2$-blocks of finite groups with defect group $D=Q \times R$ and inertial quotient $\mathbb{E}$ where $Q \cong (C_{2^m})^n$, $R \cong C_{2^r}$, and $\mathbb{E}$ contains a Singer cycle of $\operatorname{Aut}(Q)$ (an element of order $2^n-1$). We classify such blocks up to Morita equivalence when either $\mathbb{E}$ is cyclic or $r=1$. We achieve a partial classification when $r>1$ and $E$ is non-cyclic.