论文标题
使用基质产品密度运算符模拟嘈杂的量子电路
Simulating Noisy Quantum Circuits with Matrix Product Density Operators
论文作者
论文摘要
使用古典计算机模拟量子电路需要根据系统大小成倍增长的资源。但是,具有噪声的真实量子计算机可以通过考虑不同的噪声模型的各种方法进行多项式模拟。在这项工作中,我们使用矩阵乘积密度运算符(MPDO)在1D中模拟随机量子电路,以示为噪声模型,例如去极化,去极化和振幅阻尼。我们表明,基于矩阵乘积状态(MP)的方法未能为所考虑的任何噪声模型近似嘈杂的输出量子状态,而MPDO方法近似它们。与矩阵产品运算符(MPO)的方法相比,MPDO方法反映了噪声的清晰物理图片(内部指数照顾噪声模拟)和量子纠缠(带有键指数进行了键盘指数,需要照顾两Qubit的栅极模拟)。因此,在系统噪声较弱的情况下,由于模拟所需的内部维度相对较小,MPDO的资源成本将显着少于MPO的资源成本。如果有强大的系统噪声,相对较小的粘结尺寸可能足以模拟嘈杂的电路,这表明噪声足够大,可以进行“易于”的经典模拟。此外,我们提出了一个更有效的张量更新方案,具有最佳的内部和键尺寸截断,在电路的每一层之后都执行,该方案均具有MPDO的规范形式,以提高模拟精度。将内部尺寸截断为最大值$κ$和债券尺寸为最大值$χ$,我们的模拟量表的成本为$ \ simndκ^3χ^3 $,对于具有深度$ d $的$ n $ qubit Circile。
Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. In this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, depolarizing, and amplitude damping. We show that the method based on Matrix Product States (MPS) fails to approximate the noisy output quantum states for any of the noise models considered, while the MPDO method approximates them well. Compared with the method of Matrix Product Operators (MPO), the MPDO method reflects a clear physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement (with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the resource cost of MPDO will be significantly less than that of the MPO due to a relatively small inner dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an `easy' classical simulation. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value $κ$ and bond dimension to a maximum value $χ$, the cost of our simulation scales as $\sim NDκ^3χ^3$, for an $N$-qubit circuit with depth $D$.