论文标题

通过大筛原理在两点均匀空间上球形谐波有限扩展的浓度估计值

Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle

论文作者

Jaming, Philippe, Speckbacher, Michael

论文摘要

我们研究了使用大筛子方法研究拉普拉斯 - 贝特拉米操作员的征收特征函数的有限膨胀的紧凑型两点均匀空间的浓度问题。我们以最大奈奎斯特密度为浓度得出上限。我们的证明使用某些区域过滤器的球形谐波基础系数的估计值,以及雅各比多项式的订购结果,用于接近一个的参数。

We study the concentration problem on compact two-point homogeneous spaces of finite expansions of eigenfunctions of the Laplace-Beltrami operator using large sieve methods. We derive upper bounds for concentration in terms of the maximum Nyquist density. Our proof uses estimates of the spherical harmonics basis coefficients of certain zonal filters and an ordering result for Jacobi polynomials for arguments close to one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源