论文标题
碳纳米管中的Terahertz激素学:激子自动化和乘法
Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication
论文作者
论文摘要
激子在现代半导体中的光学过程中起主要作用,例如单壁碳纳米管(SWCNT),过渡金属二甲化剂和2D钙钛矿量子井。它们具有极大的结合能(> 100〜MEV),即使在高温下,它们都具有统治吸收和发射光谱。较大的结合能暗示它们是稳定的,也很难电离,使它们似乎不适合需要移动电荷载体,尤其是Terahertz发射器和太阳能电池的光电设备。在这里,我们对对齐的单手性别半导体SWCNT的膜进行了Terahertz发射和光电研究,发现激发子自动取代,即自发地将其分解为电子和孔中。此过程自然发生超快(<1〜ps),同时保存能量和动量。然后,当应用直流偏置时,可以加速创建的载体,以发射一阵terahertz辐射,与基于标准GAAS的发射器相比,具有有希望的效率。此外,在高偏见下,加速的载体获得了足够高的动能,以通过影响激子的产生来创建次级激子,并以完全的能量和动力来保护方式。这种激子乘法过程导致非线性光电流随偏置的函数。我们的理论模拟基于非平衡玻尔兹曼传输方程,考虑到所有可能的散射途径和逼真的频带结构,将我们所有的实验数据半量化重现。这些结果不仅阐明了SWCNT中激进依赖性的激素和载体的超快速动力学,而且还暗示了尽管激子结合能量与Terahertz光子能量之间的数量命令不匹配,但仍提出了前往Terahertz Invitonics的有希望的途径。
Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast (<1~ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all our experimental data semi-quantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in SWCNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.