论文标题
六角形抗铁磁铁中的自旋波理论
Theory of spin waves in a hexagonal antiferromagnet
论文作者
论文摘要
我们在六角形抗铁磁铁中构建了旋转波的现场理论描述,该抗铁磁铁和三个磁性sublattices和Coplanar $ 120^\ circ $磁性顺序。可以通过点组对称性将三个金石模式分为单点$α_{0} $和DOUBLET $(β_X,β_Y)$。 $α_0$ singlet由自由相对论标量字段的标准理论描述。 $(β_x,β_Y)$ Doublet的场理论类似于二维各向同性固体的弹性理论,具有独特的纵向和横向“声音速度”。著名的海森堡模型在三角形和kagome晶格上具有最近的邻居交换,这是特殊情况,是自旋波速度意外变性的特殊情况。可以为任何晶格模型计算出声速。我们将这种方法应用于Mn $ _3 $ X家族的化合物,并带有堆叠的Kagome层。
We construct a field-theoretic description of spin waves in hexagonal antiferromagnets with three magnetic sublattices and coplanar $120^\circ$ magnetic order. The three Goldstone modes can be separated by point-group symmetry into a singlet $α_{0}$ and a doublet $(β_x,β_y)$. The $α_0$ singlet is described by the standard theory of a free relativistic scalar field. The field theory of the $(β_x,β_y)$ doublet is analogous to the theory of elasticity of a two-dimensional isotropic solid with distinct longitudinal and transverse "speeds of sound". The well-known Heisenberg models on the triangular and kagome lattices with nearest-neighbour exchange turn out to be special cases with accidental degeneracy of the spin-wave velocities. The speeds of sound can be readily calculated for any lattice model. We apply this approach to the compounds of the Mn$_3$X family with stacked kagome layers.