论文标题
材料中的微观松弛通道,用于超导Qubit
Microscopic Relaxation Channels in Materials for Superconducting Qubits
论文作者
论文摘要
尽管有越来越多的证据表明材料瑕疵是超导量子的实际应用的主要障碍,但很少了解微观材料特性与量子线相干性之间的连接。在这里,我们对transmon Qubit松弛时间进行测量$ T_1 $与光谱和显微镜的显微镜以及量子型薄膜薄膜的显微镜平行。通过比较使用三种技术沉积的膜的结果,我们揭示了$ T_1 $与晶粒尺寸之间的相关性,沿晶界增强的氧扩散以及表面附近的亚氧化物的浓度。物理机制将这些微观特性连接到残留的表面电阻和$ T_1 $,这是由于晶界和亚氧化物缺陷引起的损失。此外,实验表明,残留电阻比可以用作量子寿命的优点。这种理解量子反应性的全面方法为材料驱动的超导量子量度性能改善的途径。
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times $T_1$ in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between $T_1$ and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and $T_1$ through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.