论文标题

使用轻质深度卷积神经网络进行视觉跟踪的有效规模估计方法

Efficient Scale Estimation Methods using Lightweight Deep Convolutional Neural Networks for Visual Tracking

论文作者

Marvasti-Zadeh, Seyed Mojtaba, Ghanei-Yakhdan, Hossein, Kasaei, Shohreh

论文摘要

近年来,基于判别相关过滤器(DCF)的视觉跟踪方法非常有前途。但是,这些方法中的大多数都缺乏稳定的估计技能。尽管广泛的基于DCF的广泛方法利用了从深层卷积神经网络(CNN)中提取的特征,但视觉目标的比例仍由手工制作的特征估算。尽管对CNN的开发施加了很高的计算负担,但本文利用了预训练的轻型CNNS模型提出了两种有效的尺度估计方法,这不仅提高了视觉跟踪性能,而且还提供了可接受的跟踪速度。提出的方法是根据卷积特征图的整体或区域表示制定的,以有效地整合到DCF公式中,以学习频域中的稳健尺度模型。此外,根据常规规模估计方法的迭代特征提取不同目标区域的迭代特征提取,提出的方法利用了提出的一通特征提取过程,从而显着提高了计算效率。 OTB-50,OTB-100,TC-128和FOT-2018视觉跟踪数据集的全面实验结果表明,所提出的视觉跟踪方法有效地胜过最先进的方法。

In recent years, visual tracking methods that are based on discriminative correlation filters (DCF) have been very promising. However, most of these methods suffer from a lack of robust scale estimation skills. Although a wide range of recent DCF-based methods exploit the features that are extracted from deep convolutional neural networks (CNNs) in their translation model, the scale of the visual target is still estimated by hand-crafted features. Whereas the exploitation of CNNs imposes a high computational burden, this paper exploits pre-trained lightweight CNNs models to propose two efficient scale estimation methods, which not only improve the visual tracking performance but also provide acceptable tracking speeds. The proposed methods are formulated based on either holistic or region representation of convolutional feature maps to efficiently integrate into DCF formulations to learn a robust scale model in the frequency domain. Moreover, against the conventional scale estimation methods with iterative feature extraction of different target regions, the proposed methods exploit proposed one-pass feature extraction processes that significantly improve the computational efficiency. Comprehensive experimental results on the OTB-50, OTB-100, TC-128 and VOT-2018 visual tracking datasets demonstrate that the proposed visual tracking methods outperform the state-of-the-art methods, effectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源