论文标题

反应扩散系统的高规范中的大偏差

Large Deviations in the Supremum Norm for a Reaction-Diffusion System

论文作者

Franco, Tertuliano, Gurgel, Luana A., de Lima, Bernardo N. B.

论文摘要

我们在超级规范中介绍了一个巨大的偏差估计值,该系统是独立随机步行系统,并在带有$ n $ sites的离散曲线上演变出了出生和死亡的动态。所考虑的缩放限制是所谓的\ textIt {高密度极限}(请参阅主题上的调查\ cite {franco}),其中粒子的空间,时间和初始数量被重新固定。此处获得的相关速率功能是\ cite {Jonalandimvares}的速率函数的半线性化版本,该版本处理了用出生和死亡动力学超级实现的巨大排除过程。大偏差证明的成分是提供原始过程的适当类扰动的限制。这正是这项工作的主要贡献之一:将原始高密度方法扩展的策略(如\ cite {arnold,blount2,blount2,blount2,blount,francogroisman,kote2,kotehigh1988})到弱非对称系统。关于粒子的初始数量,功率定律和(至少)指数增长的两种情况。在第一种情况下,我们仅在一定的光滑轮廓子集上介绍下限,而在第二种情况下,在第二种情况下,假设出生和死亡功能和持续的初始概况,我们提供了完整的大偏差原理。

We present large deviations estimates in the supremum norm for a system of independent random walks superposed with a birth-and-death dynamics evolving on the discrete torus with $N$ sites. The scaling limit considered is the so-called \textit{high density limit} (see the survey \cite{franco} on the subject), where space, time and initial quantity of particles are rescaled. The associated rate functional here obtained is a semi-linearised version of the rate function of \cite{JonaLandimVares}, which dealt with large deviations of exclusion processes superposed with birth-and-death dynamics. An ingredient in the proof of large deviations consists in providing a limit of a suitable class of perturbations of the original process. This is precisely one of the main contributions of this work: a strategy to extend the original high density approach (as in \cite{Arnold,blount2,blount,francogroisman,Kote2,KoteHigh1988}) to weakly asymmetric systems. Two cases are considered with respect to the initial quantity of particles, the power law and the (at least) exponential growth. In the first case, we present the lower bound only on a certain subset of smooth profiles, while in the second case, additionally assuming concavity of the birth and the death functions and a constant initial profile, we provide a full large deviations principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源