论文标题

从专家演示中学习控制障碍功能

Learning Control Barrier Functions from Expert Demonstrations

论文作者

Robey, Alexander, Hu, Haimin, Lindemann, Lars, Zhang, Hanwen, Dimarogonas, Dimos V., Tu, Stephen, Matni, Nikolai

论文摘要

受模仿和通过最佳控制复制专家行为的逆增强学习成功的启发,我们提出了一种基于学习的基于控制障碍功能(CBF)的安全控制器合成的方法。我们考虑设置已知的非线性控制仿射动力学系统,并假设我们可以访问专家产生的安全轨迹 - 这种设置的实际例子将是一种自动驾驶车辆的运动学模型,该模型具有安全轨迹(例如,避免了由人驾驶员产生的与环境障碍物相撞的轨迹)。然后,我们建议并分析一种基于优化的方法来学习CBF,该方法在适当的Lipschitz平滑度假设上享有可证明的安全保证。我们方法的一种优势是,它对代表CBF的参数化不可知,只是假设这些功能的Lipschitz常数才能有效地界定。此外,如果CBF参数化是凸的,则在温和的假设下,我们的学习过程也是如此。我们最终使用CBF的随机特征和深度神经网络参数化,以对平面和现实示例的结果进行广泛的数值评估。据我们所知,这些是从数据中学习可证明安全的控制障碍功能的第一个结果。

Inspired by the success of imitation and inverse reinforcement learning in replicating expert behavior through optimal control, we propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs). We consider the setting of a known nonlinear control affine dynamical system and assume that we have access to safe trajectories generated by an expert - a practical example of such a setting would be a kinematic model of a self-driving vehicle with safe trajectories (e.g., trajectories that avoid collisions with obstacles in the environment) generated by a human driver. We then propose and analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz smoothness assumptions on the underlying dynamical system. A strength of our approach is that it is agnostic to the parameterization used to represent the CBF, assuming only that the Lipschitz constant of such functions can be efficiently bounded. Furthermore, if the CBF parameterization is convex, then under mild assumptions, so is our learning process. We end with extensive numerical evaluations of our results on both planar and realistic examples, using both random feature and deep neural network parameterizations of the CBF. To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源