论文标题

在维度弱型$(1,1)$上

On the dimensional weak-type $(1,1)$ bound for Riesz transforms

论文作者

Spector, Daniel, Stockdale, Cody B.

论文摘要

令$ r_j $表示$ j^{\ text {th}} $ riesz在$ \ mathbb {r}^n $上转换。我们证明存在一个绝对常数$ c> 0 $,这样\ begin {align*} | \ {| r_jf |>λ\} | \ leq c \ left(\ frac {1}λ\ | f \ | _ {l^1(\ Mathbb {r}^n)}+\sup_ν $ f \ in l^1(\ Mathbb {r}^n)$,其中以上上述为$ $ν= \ sum_ {k = 1}^na_kδ_{c_kΔ_{ \ Mathbb {r}^+$ with $ \ sum_ {k = 1}^n a_k \ leq 16 \ | f \ | _ {l^1(\ Mathbb {r}^n)} $。这表明,要确定弱型$(1,1)$不平等的尺寸估计值,它足以研究适用于DIRAC质量有限线性组合的Riesz变换的相应弱型不平等。我们利用这一事实为最著名的维度上限提供了新的证明,而我们的还原结果也适用于Calderón-Zygmund运营商的更一般类别。

Let $R_j$ denote the $j^{\text{th}}$ Riesz transform on $\mathbb{R}^n$. We prove that there exists an absolute constant $C>0$ such that \begin{align*} |\{|R_jf|>λ\}|\leq C\left(\frac{1}λ\|f\|_{L^1(\mathbb{R}^n)}+\sup_ν |\{|R_jν|>λ\}|\right) \end{align*} for any $λ>0$ and $f \in L^1(\mathbb{R}^n)$, where the above supremum is taken over measures of the form $ν=\sum_{k=1}^Na_kδ_{c_k}$ for $N \in \mathbb{N}$, $c_k \in \mathbb{R}^n$, and $a_k \in \mathbb{R}^+$ with $\sum_{k=1}^N a_k \leq 16\|f\|_{L^1(\mathbb{R}^n)}$. This shows that to establish dimensional estimates for the weak-type $(1,1)$ inequality for the Riesz tranforms it suffices to study the corresponding weak-type inequality for Riesz transforms applied to a finite linear combination of Dirac masses. We use this fact to give a new proof of the best known dimensional upper bound, while our reduction result also applies to a more general class of Calderón-Zygmund operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源