论文标题
混合模拟中星际冲击的外质子光谱
Suprathermal Proton Spectra at Interplanetary Shocks in Hybrid Simulations
论文作者
论文摘要
行星际冲击是拟议的外离子种群的拟议来源之一(即具有太阳能能量几倍的离子)。在这里,我们提出了一系列太阳风中无碰撞冲击的三维混合模拟的结果。我们专注于冲击正态角度,$θ_{bn} $的影响,以及冲击速度$ v_s $,对产生具有能量的质子,是上游等离子体的热能的数百倍。 $θ_{bn} $和$ v_s $的组合效果导致震荡在3.0至6.0范围内的Alfvén马赫数,而快速磁马赫在2.5至5.0范围内,代表中度至强大的星际间冲击。我们发现$θ_{bn} $在很大程度上组织了质子能谱的形状,而冲击速度控制加速度效率。所有冲击都在冲击方面加速质子,但光谱演化取决于$θ_{bn} $。用$θ_{bn} \ geq 60^\ circ $冲击在冲击前面产生孤立的超颗粒质子爆发,而$θ_{bn} \ leq 45^\ circ $ shock shock shock $ circ $ circ $ crock $ cripter create create create create the Shock the Shock上游。当$θ_{bn} \ geq 45^\ circ $时,下游质子能光谱具有指数或平滑的破碎幂律形式,当$θ_{bn} \ leq 30^\ circ $时,单个幂律形式。最强冲击的下游质子具有至少100倍上游热能的能量,$θ_{bn} \ leq 30^\ circ $ shocks产生最高能量质子,$θ_{bn} \ geq 60^\ geq 60^\ circ $ shock $ shock yist少数能量的最大能量,至少是少数能量的能量。
Interplanetary shocks are one of the proposed sources of suprathermal ion populations (i.e., ions with energies of a few times the solar wind energy). Here, we present results from a series of three-dimensional hybrid simulations of collisionless shocks in the solar wind. We focus on the influence of the shock-normal angle, $θ_{Bn}$, and the shock speed, $V_s$, on producing protons with energies a few to hundreds of times the thermal energy of the upstream plasma. The combined effects of $θ_{Bn}$ and $V_s$ result in shocks with Alfvén Mach numbers in the range 3.0 to 6.0 and fast magnetosonic Mach numbers in the range 2.5 to 5.0, representing moderate to strong interplanetary shocks. We find that $θ_{Bn}$ largely organizes the shape of proton energy spectra while shock speed controls acceleration efficiency. All shocks accelerate protons at the shock front but the spectral evolution depends on $θ_{Bn}$. Shocks with $θ_{Bn} \geq 60^\circ$ produce isolated bursts of suprathermal protons at the shock front while shocks with $θ_{Bn} \leq 45^\circ$ create suprathermal beams upstream of the shock. Downstream proton energy spectra have exponential or smoothed broken power-law forms when $θ_{Bn} \geq 45^\circ$, and a single power-law form when $θ_{Bn} \leq 30^\circ$. Protons downstream of the strongest shocks have energies at least 100 times the upstream thermal energy, with $θ_{Bn} \leq 30^\circ$ shocks producing the highest energy protons and $θ_{Bn} \geq 60^\circ$ shocks producing the largest number of protons with energies at least a few times the thermal energy.