论文标题

非线性双曲线方程不连续的galerkin离散术的熵稳定和保存属性的限制器

Entropy stabilization and property-preserving limiters for discontinuous Galerkin discretizations of nonlinear hyperbolic equations

论文作者

Kuzmin, Dmitri

论文摘要

本文中提出的方法桥接了熵稳定和保留阳性性的不连续盖尔金(DG)方法之间的差距,以解决非线性双曲线问题。熵稳定性属性,并且可以根据熵条件和离散的最大原则分别使用通量限制器强制执行熵稳定性,并选择地保存元素平均值。如Abgrall在节点有限元近似值的背景下,使用Rusanov型熵粘度来约束分段线性DG近似的(有限)梯度的熵产生。我们将他的代数熵固定在适合任意多项式碱基的形式中,尤其是用于模态DG方法。熵稳定项的泰勒基础表示表明,它以类似于斜率限制的方式对溶液梯度进行了惩罚,并且需要半平移的处理才能达到所需的效果。 Rusanov熵固定的隐式泰勒基础版本保留了元素质量矩阵的稀疏模式。因此,如果泰勒基础是正交的,并且采用明确处理剩余条款,则无需解决线性系统。基于顶点的坡度限制器的可选应用限制了分段线性DG解决方案,以通过单元平均值的局部最大值和最小值来界定。熵稳定与通量和斜率限制的组合导致具有所有所需特性的约束近似值。对于两个标量二维测试问题,针对非线性和非凸通量功能进行了新的极限技术和熵校正程序的数值研究。

The methodology proposed in this paper bridges the gap between entropy stable and positivity-preserving discontinuous Galerkin (DG) methods for nonlinear hyperbolic problems. The entropy stability property and, optionally, preservation of local bounds for the cell averages are enforced using flux limiters based on entropy conditions and discrete maximum principles, respectively. Entropy production by the (limited) gradients of the piecewise-linear DG approximation is constrained using Rusanov-type entropy viscosity, as proposed by Abgrall in the context of nodal finite element approximations. We cast his algebraic entropy fix into a form suitable for arbitrary polynomial bases and, in particular, for modal DG approaches. The Taylor basis representation of the entropy stabilization term reveals that it penalizes the solution gradients in a manner similar to slope limiting and requires semi-implicit treatment to achieve the desired effect. The implicit Taylor basis version of the Rusanov entropy fix preserves the sparsity pattern of the element mass matrix. Hence, no linear systems need to be solved if the Taylor basis is orthogonal and an explicit treatment of the remaining terms is adopted. The optional application of a vertex-based slope limiter constrains the piecewise-linear DG solution to be bounded by local maxima and minima of the cell averages. The combination of entropy stabilization with flux and slope limiting leads to constrained approximations that possess all desired properties. Numerical studies of the new limiting techniques and entropy correction procedures are performed for two scalar two-dimensional test problems with nonlinear and nonconvex flux functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源