论文标题

使用氧气和水世界上使用氧气的生命可检测性

Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds

论文作者

Glaser, Donald M, Hartnett, Hilairy Ellen, Desch, Steven J., Unterborn, Cayman T., Anbar, Ariel, Buessecker, Steffen, Fisher, Theresa, Glaser, Steven, Kane, Stephen R., Lisse, Carey M., Millsaps, Camerian, Neuer, Susanne, ORourke, Joseph G., Santos, Nuno, Walker, Sara Imari, Zolotov, Mikhail

论文摘要

在系外行星上寻找生活是我们这个时代的宏伟科学挑战之一。迄今为止的策略是(例如,通过像开普勒这样的过境调查)在其星星宜居区中类似地球的系外行星,然后使用传输光谱来测量行星气氛中的生物签名气,尤其是氧气(例如,使用JWST,JAMS Webb Space telescope)。与JWST可以观察到的那样,已经有更多的行星了,诸如过境系外行星调查卫星等任务将发现更多。需要更好地了解与生物签名气体相关的地球化学周期,以确定目标的优先级,以进行昂贵的后续观察并帮助设计未来的任务。我们定义了可检测性指数,以量化生物签名气体可以分配生物学与非生物学起源的可能性。我们将此指数应用于具有不同水含量的地球样行星上的氧气O2的情况。我们证明,在类似于0.2重量百分比(即没有暴露的大陆)的地球样系外行星上,生物质量磷的通量降低了通过光合产生的大气生产的O2的出口到与地球物理生产的水平,从而通过水和氢含量的氢化而无法分辨。较高的水含量> 1wt%,导致高压冰壁球进一步缓慢磷循环。矛盾的是,最大的水含量允许将O2用作生物签名为0.2wt%,与基于质量和半径的水一致。因此,O2生物签名的效用可能需要直接检测水和降落在行星上。

The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) Earth-like exoplanets in their stars habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets atmospheres (e.g., using JWST, the James Webb Space Telescope). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological vs. non-biological origin. We apply this index to the case of oxygen gas, O2, on Earth-like planets with varying water contents. We demonstrate that on Earth-like exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源