论文标题
Bose-Einstein冷凝物的有效自相似扩展:自由空间与限制的几何形状
Effective self-similar expansion of a Bose-Einstein condensate: Free space vs confined geometries
论文作者
论文摘要
我们比较了膨胀的三维玻色污染物的确切演变与从D.guéry-Odelin中引入的有效缩放方法获得的[Phys。 Rev. A 66,033613(2002)]。这种方法包括在这里以不同的几何形状和配置进行测试。我们发现,在几乎各向同性的陷阱的情况下,有效的缩放量表以高精度复制了相互作用的格罗斯·皮塔夫斯基方程的确切进化,这与M. Modugno,G.Pagnini和M. A. A. A. A. A. A. A. A. Valle-BasagoiTi [Phys Phys Phys Phys Phys Phys phys Phys Phys Phys Phys physs所指示的相互作用的任意值所指示。修订版A 97,043604(2018)]。相反,这表明,如果有强烈的各向异性和被困的几何形状,普遍自相似性的假设分解。
We compare the exact evolution of an expanding three-dimensional Bose-Einstein condensate with that obtained from the effective scaling approach introduced in D. Guéry-Odelin [Phys. Rev. A 66, 033613 (2002)]. This approach, which consists in looking for self-similar solutions to be satisfied on average, is tested here in different geometries and configurations. We find that, in case of almost isotropic traps, the effective scaling reproduces with high accuracy the exact evolution dictated by the Gross-Pitaevskii equation for arbitrary values of the interactions, in agreement with the proof-of-concept of M. Modugno, G. Pagnini, and M. A. Valle-Basagoiti [Phys. Rev. A 97, 043604 (2018)]. Conversely, it is shown that the hypothesis of universal self-similarity breaks down in case of strong anisotropies and trapped geometries.