论文标题

通过深层均匀特征融合,异质光学和SAR遥感图像中的更改检测

Change Detection in Heterogeneous Optical and SAR Remote Sensing Images via Deep Homogeneous Feature Fusion

论文作者

Jiang, Xiao, Li, Gang, Liu, Yu, Zhang, Xiao-Ping, He, You

论文摘要

异质遥感图像中的变化检测对于灾害损害评估至关重要。最近的方法使用同质变换,将异质光学和SAR遥感图像转换为同一特征空间,以实现变化检测。这种转换主要在低级特征空间上运行,并可能破坏语义内容,从而恶化变化检测的性能。为了解决这个问题,本文提出了一种基于图像样式传输(IST)的新的均匀转换模型,称为深层特征融合(DHFF)。与现有方法不同,DHFF方法将语义内容和样式特征分离为异质图像中以执行均匀转换。语义内容的分离和均匀转换中的样式可阻止图像语义内容的损坏,尤其是在变化区域。通过这种方式,通过准确的均匀转换来提高检测性能。此外,我们提出了一种新的迭代IST(IIST)策略,其中每种IST迭代措施中的成本函数在其他新功能子空间中以进行更改检测。之后,在相同特征空间中的原始图像和转换的图像上准确完成更改检测。 SAR和光学卫星获得的实际遥感图像用于评估所提出的方法的性能。该实验表明,就准确率和KAPPA指数而言,所提出的DHFF方法在异质光学和SAR遥感图像中的变化检测方面取得了显着改善。

Change detection in heterogeneous remote sensing images is crucial for disaster damage assessment. Recent methods use homogenous transformation, which transforms the heterogeneous optical and SAR remote sensing images into the same feature space, to achieve change detection. Such transformations mainly operate on the low-level feature space and may corrupt the semantic content, deteriorating the performance of change detection. To solve this problem, this paper presents a new homogeneous transformation model termed deep homogeneous feature fusion (DHFF) based on image style transfer (IST). Unlike the existing methods, the DHFF method segregates the semantic content and the style features in the heterogeneous images to perform homogeneous transformation. The separation of the semantic content and the style in homogeneous transformation prevents the corruption of image semantic content, especially in the regions of change. In this way, the detection performance is improved with accurate homogeneous transformation. Furthermore, we present a new iterative IST (IIST) strategy, where the cost function in each IST iteration measures and thus maximizes the feature homogeneity in additional new feature subspaces for change detection. After that, change detection is accomplished accurately on the original and the transformed images that are in the same feature space. Real remote sensing images acquired by SAR and optical satellites are utilized to evaluate the performance of the proposed method. The experiments demonstrate that the proposed DHFF method achieves significant improvement for change detection in heterogeneous optical and SAR remote sensing images, in terms of both accuracy rate and Kappa index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源