论文标题
手性扰动理论的普遍阳性界限
Generalized positivity bounds on chiral perturbation theory
论文作者
论文摘要
最近,已经发现了一组新的具有$ t $衍生品的阳性界限。我们探索了这些广义阳性范围的通用特征,并使用循环幅度探索这些界限,并应用这些界限以将手性扰动理论中的参数限制为近代到隔壁的顺序。我们表明,与现有的公理界相比,广义阳性界限对$ \ bar l_i $常数产生了更强的约束。 $ b_i $常数的参数空间受到广义阳性界限的约束,为凸区域,该区域被包含在总空间的许多部分中。我们还表明,这些阳性界限的改进版本可以进一步增强对参数的约束。然而,经常使用的帕德单位化方法并不能改善低能量手性扰动理论中振幅的分析性。
Recently, a new set of positivity bounds with $t$ derivatives have been discovered. We explore the generic features of these generalized positivity bounds with loop amplitudes and apply these bounds to constrain the parameters in chiral perturbation theory up to the next-to-next-to-leading order. We show that the generalized positivity bounds give rise to stronger constraints on the $\bar l_i$ constants, compared to the existing axiomatic bounds. The parameter space of the $b_i$ constants is constrained by the generalized positivity bounds to be a convex region that is enclosed for many sections of the total space. We also show that the improved version of these positivity bounds can further enhance the constraints on the parameters. The often used Padé unitarization method however does not improve the analyticity of the amplitudes in the chiral perturbation theory at low energies.