论文标题

Riesz变换了一般的Ornstein-Uhlenbeck Semigroup

Riesz transforms of a general Ornstein--Uhlenbeck semigroup

论文作者

Casarino, Valentina, Ciatti, Paolo, Sjögren, Peter

论文摘要

我们考虑了与Ornstein相关的任何订单的Riesz转换 - uhlenbeck操作员$ \ MATHCAL L $,并带有协方差$ Q $,由真实,对称和积极的确定矩阵给出,并且由真实矩阵给出的漂移$ b $,其特征值具有负面的真实零件。在这种一般的高斯语境中,我们证明,相对于不变的度量,当且仅当它的订单最多为$ 2 $时,Riesz变换是薄弱的$(1,1)$。

We consider Riesz transforms of any order associated to an Ornstein--Uhlenbeck operator $\mathcal L$, with covariance $Q$ given by a real, symmetric and positive definite matrix, and with drift $B$ given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type $(1,1)$ with respect to the invariant measure if and only if its order is at most $2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源