论文标题

在Seshadri常数和点曲线配置上

On Seshadri constants and point-curve configurations

论文作者

Janasz, Marek, Pokora, Piotr

论文摘要

在注释中,我们研究了$ \ Mathcal {O} _ {\ Mathbb {p}^{2} _ {\ Mathbb {c}}}}}(1)$的多点seshadri常数。我们的第一个目的是证明Seshadri常数的值可以通过使用组合不变式来近似,我们称之为配置seshadri常数。我们研究了点曲线配置的特定示例,并为其提供相关的seshadri常数的实际值。特别是,我们提供了一个基于Hesse点核配置的示例,该配置由线路计算为关联的seshadri常数。这表明多点seshadri常数不是纯粹的组合。

In the note we study the multipoint Seshadri constants of $\mathcal{O}_{\mathbb{P}^{2}_{\mathbb{C}}}(1)$ centered at singular loci of certain curve arrangements in the complex projective plane. Our first aim is to show that the values of Seshadri constants can be approximated with use of a combinatorial invariant which we call the configurational Seshadri constant. We study specific examples of point-curve configurations for which we provide actual values of the associated Seshadri constants. In particular, we provide an example based on Hesse point-conic configuration for which the associated Seshadri constant is computed by a line. This shows that multipoint Seshadri constants are not purely combinatorial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源