论文标题

dirac半学的效率关键性和增大波动

Fermionic criticality with enlarged fluctuations in Dirac semimetals

论文作者

Zhou, Jiang, Kou, Su-peng

论文摘要

波动驱动的连续量子关键性对凝结物理学引起了极大的兴趣。已经验证的是,无间隙费米子的波动可以改变临界时相变的性质。在本文中,我们研究了蜂窝晶格材料中的$ \ times $ iSing波动的费米子量子关键。通过采用扰动重新归一化组方法研究了半金属相和两个有序阶段之间多政治阶段多政治阶段的多政治阶段的理论。我们首先确定量子波动可能导致相变连续的临界范围。我们发现,仅当四组分迪拉克费米斯的风味$ n_f \ geq1/4 $的风味数字时,伊斯汀的危险性才是连续的。然后,使用$ε$扩展在四个时空维度上,然后研究由破坏对称性的电子不稳定性引起的Ising $ \ times $ ising多政治性。我们分析了基本的固定点结构,并计算了Ising $ \ times $ ising Gross-Neveu-Yukawa通用类的关键指数。此外,还简要讨论了在蜂窝状晶格上Fermion双线性的相关性缩放行为。

The fluctuations-driven continuous quantum criticality has sparked tremendous interest in condensed matter physics. It has been verified that the gapless fermions fluctuations can change the nature of phase transition at criticality. In this paper, we study the fermionic quantum criticality with enlarged Ising$\times$Ising fluctuations in honeycomb lattice materials. The Gross-Neveu-Yukawa theory for the multicriticality between the semimetallic phase and two ordered phases that break Ising symmetry is investigated by employing perturbative renormalization group approach. We first determine the critical range in which the quantum fluctuations may render the phase transition continuous. We find that the Ising criticality is continuous only when the flavor numbers of four-component Dirac fermions $N_f\geq1/4$. Using the $ε$ expansion in four space-time dimensions, we then study the Ising$\times$Ising multicriticality stemming from the symmetry-breaking electronic instabilities. We analyze the underlying fixed-point structure and compute the critical exponents for the Ising$\times$Ising Gross-Neveu-Yukawa universality class. Further, the correlation scaling behavior for the fermion bilinear on the honeycomb lattice at the multicritical point are also briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源