论文标题

Min-Max谐波图和保形特征值的新特征

Min-max harmonic maps and a new characterization of conformal eigenvalues

论文作者

Karpukhin, Mikhail, Stern, Daniel L.

论文摘要

给定一个$λ_k(m,c)$的表面$ m $和固定的保形类别$ c $,是$ k $ th非平凡的laplacian特征值的至上。 Nadirashvili已经观察到,实现$λ_K(m,c)$的指标与球形的谐波图密切相关。在本文中,我们确定了$λ_1(m,c)$和$λ_2(m,c)$,具有与球体值图的能量功能相关的最小值数量。作为应用程序,我们获得了几个新的特征值边界,包括前两个steklov特征值的尖锐等等不平等。这种表征还提供了最大指标的存在的替代证明,该指标意识到$λ_1(m,c)$,$λ_2(m,c)$,此外,使我们能够获得满足自然紧凑性条件的最大ra的规则定理。

Given a surface $M$ and a fixed conformal class $c$ one defines $Λ_k(M,c)$ to be the supremum of the $k$-th nontrivial Laplacian eigenvalue over all metrics $g\in c$ of unit volume. It has been observed by Nadirashvili that the metrics achieving $Λ_k(M,c)$ are closely related to harmonic maps to spheres. In the present paper, we identify $Λ_1(M,c)$ and $Λ_2(M,c)$ with min-max quantities associated to the energy functional for sphere-valued maps. As an application, we obtain several new eigenvalue bounds, including a sharp isoperimetric inequality for the first two Steklov eigenvalues. This characterization also yields an alternative proof of the existence of maximal metrics realizing $Λ_1(M,c)$, $Λ_2(M,c)$ and, moreover, allows us to obtain a regularity theorem for maximal Radon measures satisfying a natural compactness condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源