论文标题
稳定和因果关系纳维尔方程
Stable and causal relativistic Navier-Stokes equations
论文作者
论文摘要
相对论的Navier-Stokes方程表达了能量弹药张量和粒子数电流的保守性,该粒子数电流在局部流体动力学变量方面:温度,流体速度和化学势。我们表明,如果人们采用合适的流体动力变量定义,粘性流体方程是稳定和因果关系。
Relativistic Navier-Stokes equations express the conservation of the energy-momentum tensor and the particle number current in terms of the local hydrodynamic variables: temperature, fluid velocity, and the chemical potential. We show that the viscous-fluid equations are stable and causal if one adopts suitable non-equilibrium definitions of the hydrodynamic variables.