论文标题

深层:深层神经网络中概念进化检测的流式传输方法

DeepStreamCE: A Streaming Approach to Concept Evolution Detection in Deep Neural Networks

论文作者

Chambers, Lorraine, Gaber, Mohamed Medhat, Abdallah, Zahraa S.

论文摘要

深度神经网络在决策预测中实验表明了比其他机器学习方法的表现优于其他机器。但是,一个主要问题是对受过训练的类别的分类决定的封闭性质,这可能会对安全关键系统产生严重的后果。当深层神经网络处于流媒体环境中时,需要快速解释此分类以确定分类结果是否受到信任。当对深神经网络的输入数据随时间变化时,可能会发生未经信任的分类。可能发生的一种变化是概念进化,其中引入了一个新类,即深神经网络未经训练。在大多数深神经网络体系结构中,唯一的选择是将此实例分配给训练的类别之一,这是不正确的。这项研究的目的是检测新班级的到来。解释深神经网络的现有工作通常集中于神经元激活,以提供视觉解释和提取特征。我们的新方法创造了深层流,使用流方法在深神网络中进行实时概念进化检测。 DeepStreamce在离线阶段使用自动编码器和基于MCOD流的聚类应用神经元激活减少。两种输出均在在线阶段使用,以分析不断发展的流中的神经元激活,以便实时检测概念演变的发生。我们通过培训VGG16卷积神经网络对CIFAR-10数据集的数据组合来评估深层流形,并将一些类用作概念进化。为了进行比较,我们将数据和VGG16网络应用于开放集深网络解决方案 - OpenMax。在确定数据集的概念演变时,Deepstreamce优于OpenMax。

Deep neural networks have experimentally demonstrated superior performance over other machine learning approaches in decision-making predictions. However, one major concern is the closed set nature of the classification decision on the trained classes, which can have serious consequences in safety critical systems. When the deep neural network is in a streaming environment, fast interpretation of this classification is required to determine if the classification result is trusted. Un-trusted classifications can occur when the input data to the deep neural network changes over time. One type of change that can occur is concept evolution, where a new class is introduced that the deep neural network was not trained on. In the majority of deep neural network architectures, the only option is to assign this instance to one of the classes it was trained on, which would be incorrect. The aim of this research is to detect the arrival of a new class in the stream. Existing work on interpreting deep neural networks often focuses on neuron activations to provide visual interpretation and feature extraction. Our novel approach, coined DeepStreamCE, uses streaming approaches for real-time concept evolution detection in deep neural networks. DeepStreamCE applies neuron activation reduction using an autoencoder and MCOD stream-based clustering in the offline phase. Both outputs are used in the online phase to analyse the neuron activations in the evolving stream in order to detect concept evolution occurrence in real time. We evaluate DeepStreamCE by training VGG16 convolutional neural networks on combinations of data from the CIFAR-10 dataset, holding out some classes to be used as concept evolution. For comparison, we apply the data and VGG16 networks to an open-set deep network solution - OpenMax. DeepStreamCE outperforms OpenMax when identifying concept evolution for our datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源