论文标题
量子计算机上的量子计算机上的资源优化的费米式 - 局部 - 哈米顿模拟
Resource-Optimized Fermionic Local-Hamiltonian Simulation on Quantum Computer for Quantum Chemistry
论文作者
论文摘要
预计在量子计算机上模拟费米子系统的能力将彻底改变化学工程,材料设计,核物理学等等。因此,优化模拟电路在利用量子计算机的功能方面具有重要意义。在这里,我们在两个方面解决了这个问题。在容忍度的易于故障方面,我们优化了$ \ rzgate $和$ \ tgate $ GATE计数以及所需的Ancilla Qubit计数,前提是使用产品形式算法进行实施。我们在门计数中获得了两个的储蓄率,而储蓄比为11的储蓄比为11的储蓄率。在反耐受的耐受性方案中,假设使用变异量子eigensolver(VQE)方法,我们优化了两个Qubit的门计数。特定于后者,我们提出了一个框架,该框架能够引导VQE进程朝着费米子系统基础能量的收敛。基于扰动理论,该框架能够在VQE进程的每个循环中提高能量估计值,而与测试床的标准VQE方法相比,水分子的标准VQE方法与已知的地基能量更接近已知的地面能量。改进的能量估计反过来又导致了量子资源的相应水平,例如量子和量子门的数量,必须在已知地面能量的预先指定的公差之内。我们还探索了Fermion对Qubit运营商的一系列广义转换,并表明资源要求节省的节省在少数情况下是可能的。
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the $\rzgate$ and $\tgate$ gate counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than $20\%$, in small instances, is possible.